ON DUAL AUTOMORPHISM-INVARIANT MODULES

Serap Şahinkaya (Joint work with T.C. Quynh)

Gebze Technical University

June 2017

<ロ> <同> <同> < 回> < 回>

æ

Generalization of Injectivity (Projectivity)

Automorphism Invariant Modules Dual Automorphism Invariant Modules Main Results

Generalized Notions of Injectivity and Projectivity

Generalization of Injectivity (Projectivity) Automorphism Invariant Modules

Automorphism Invariant Modules Dual Automorphism Invariant Modules Main Results

- Generalized Notions of Injectivity and Projectivity
- Automorphism Invariant Modules

- Generalized Notions of Injectivity and Projectivity
- Automorphism Invariant Modules
- **③** Dual Automorphism Invariant Modules

- Generalized Notions of Injectivity and Projectivity
- Automorphism Invariant Modules
- Oual Automorphism Invariant Modules
- Main Results

- Generalized Notions of Injectivity and Projectivity
- Automorphism Invariant Modules
- Oual Automorphism Invariant Modules
- Main Results
 - Dual automorphism N-invariant modules

- Generalized Notions of Injectivity and Projectivity
- Automorphism Invariant Modules
- Oual Automorphism Invariant Modules
- Main Results
 - Dual automorphism N-invariant modules
 - S-ADS Modules

<ロ> <同> <同> < 回> < 回>

æ

• A module *M* is called quasi-injective, (or self-injective) if for every submodule *N* of *M* every *R*-homomorphism of *N* into *M* can be extended to *R*-endomorphism of *M*(Johnson and Wong, J. London Math. Soc. 1961). It is a generalization of injectivity.

- A module *M* is called quasi-injective, (or self-injective) if for every submodule *N* of *M* every *R*-homomorphism of *N* into *M* can be extended to *R*-endomorphism of *M*(Johnson and Wong, J. London Math. Soc. 1961). It is a generalization of injectivity.
- A module M is called quasi-projective if for any epimorphism $g: M \to M/T$ and any morphism $f: M \to M/T$ there exists a homomorphism $h: M \to M$ such that f = gh (Y. Miyashita, 1966). It is a generalization of projectivity.

<ロ> <同> <同> < 回> < 回>

æ

 A module M was called N-pseudo- injective if for any submodule A of N every monomorphism f : A → M can be extended to g : N → M.

 A module M was called N-pseudo- injective if for any submodule A of N every monomorphism f : A → M can be extended to g : N → M.

• A module *M* was called pseudo- injective by Jain and Singh, (J. Math. Sci., 1967) if it is *M*-pseudo- injective.

<ロ> <同> <同> < 回> < 回>

æ

• A module M was called N-pseudo- projective if for every submodule A of M and any epimorphism $g : N \to M/A$ can be lifted to a homomorphism $f : N \to M$. If

• A module M was called N-pseudo- projective if for every submodule A of M and any epimorphism $g : N \to M/A$ can be lifted to a homomorphism $f : N \to M$. If

• *M* is *M*-pseudo- projective then it is called pseudo- projective (Bican, Acta Mathematica Academiae Scientiarum Hungaricae, 1976).

<ロ> <同> <同> < 回> < 回>

æ

 Modules that are invariant under endomorphisms of their injective envelope (generalization of quasi injective modules) were studied by Dickson and Fuller just for the case of finite-dimensional algebras over fields F with more than two elements (Pacific J. Math., 1969).

- Modules that are invariant under endomorphisms of their injective envelope (generalization of quasi injective modules) were studied by Dickson and Fuller just for the case of finite-dimensional algebras over fields F with more than two elements (Pacific J. Math., 1969).
- A module *M* which is invariant under automorphisms of its injective envelope has been called an *automorphism invariant* module by Lee and Zhou equivalently *M* is automorphism-invariant if every isomorphism between two essential submodules of *M* extends to an automorphism of *M* (J. Alg. Appl., (2013)) (for modules over any ring).

- Modules that are invariant under endomorphisms of their injective envelope (generalization of quasi injective modules) were studied by Dickson and Fuller just for the case of finite-dimensional algebras over fields F with more than two elements (Pacific J. Math., 1969).
- A module *M* which is invariant under automorphisms of its injective envelope has been called an *automorphism invariant* module by Lee and Zhou equivalently *M* is automorphism-invariant if every isomorphism between two essential submodules of *M* extends to an automorphism of *M* (J. Alg. Appl., (2013)) (for modules over any ring).
- Quasi-injective and pseudo-injective modules modules are automorphism invariant (by Lee and Zhou, J. Algebra Appl., 2013).

<ロ> <同> <同> < 同> < 同>

æ

 Pseudo-injective modules and automorphism-invariant modules coincide (by Er, Singh and Srivastava, J. Algebra, 2013).

30.00

- Pseudo-injective modules and automorphism-invariant modules coincide (by Er, Singh and Srivastava, J. Algebra, 2013).
- *M* is automorphism *N*-invariant if for any essential submodule *A* of *N*, any essential monomorphism $f : A \rightarrow M$ can be extended to some $g \in Hom(N, M)$ (Quynh and Kosan, J. Alg. App., 2015).

- Pseudo-injective modules and automorphism-invariant modules coincide (by Er, Singh and Srivastava, J. Algebra, 2013).
- *M* is automorphism *N*-invariant if for any essential submodule *A* of *N*, any essential monomorphism $f : A \rightarrow M$ can be extended to some $g \in Hom(N, M)$ (Quynh and Kosan, J. Alg. App., 2015).
- *M* is called automorphism-invariant if *M* is automorphism *M*-invariant.

- Pseudo-injective modules and automorphism-invariant modules coincide (by Er, Singh and Srivastava, J. Algebra, 2013).
- *M* is automorphism *N*-invariant if for any essential submodule *A* of *N*, any essential monomorphism $f : A \rightarrow M$ can be extended to some $g \in Hom(N, M)$ (Quynh and Kosan, J. Alg. App., 2015).
- *M* is called automorphism-invariant if *M* is automorphism *M*-invariant.
- If *M* is pseudo-*N*-injective then *M* is automorphism *N*-invariant.

<ロ> <同> <同> < 同> < 同>

æ

• A right *R*-module *M* is called *dual automorphism-invariant* if whenever K_1 and K_2 are small submodules of *M*, then any epimorphism $\eta : M/K_1 \to M/K_2$ with small kernel lifts to an endomorphism φ of *M* (Singh and Srivastava, J. Alg., 2013)

$$\begin{array}{c}
M \xrightarrow{\varphi} M \\
\downarrow & \downarrow \\
M/K_1 \xrightarrow{\varphi} M/K_2
\end{array}$$

• A right *R*-module *M* is called *dual automorphism-invariant* if whenever K_1 and K_2 are small submodules of *M*, then any epimorphism $\eta : M/K_1 \to M/K_2$ with small kernel lifts to an endomorphism φ of *M* (Singh and Srivastava, J. Alg., 2013)

$$\begin{array}{c}
M \xrightarrow{\varphi} M \\
\downarrow & \downarrow \\
M/K_1 \xrightarrow{\varphi} M/K_2
\end{array}$$

• Any pseudo-projective and quasi-projective modules are dual automorphism-invariant (by Singh and Srivastava).

A right *R*-module *M* is called *dual automorphism-invariant* if whenever *K*₁ and *K*₂ are small submodules of *M*, then any epimorphism η : *M*/*K*₁ → *M*/*K*₂ with small kernel lifts to an endomorphism φ of *M* (Singh and Srivastava, J. Alg., 2013)

- Any pseudo-projective and quasi-projective modules are dual automorphism-invariant (by Singh and Srivastava).
- Converse is true over right perfect rings (by Guil Asensio, P. A., Keskin Tutuncu, D., Kalebogaz, B., Srivastava, A. K.)

Dual automorphism *N*-invariant modules *s*-ADS modules

30.00

Layout

- Generalization of Injectivity (Projectivity)
- 2 Automorphism Invariant Modules
- 3 Dual Automorphism Invariant Modules

4 Main Results

- Dual automorphism N-invariant modules
- s-ADS modules

Dual automorphism *N*-invariant modules *s*-ADS modules

<ロ> <同> <同> < 同> < 同>

æ

Dual automorphism *N*-invariant modules *s*-ADS modules

< ≣ > <

Rings are associative with unity and modules are unital right *R*-modules.

Dual automorphism N-invariant modules s-ADS modules

Rings are associative with unity and modules are unital right R-modules. The purpose of this paper is to initiate the study of dual automorphism N-invariant modules via N-pseudo-projective modules.

Definition

We call *M* dual automorphism *N*-invariant if, whenever K_1 is a small submodule of *M* and K_2 is a small submodule of *N*, then any epimorphism $p: M/K_1 \rightarrow N/K_2$ with small kernel lifts to a homomorphism $\varphi: M \rightarrow N$. That is:

Dual automorphism *N*-invariant modules *s*-ADS modules

Theorem (Ş., Quynh)

The following conditions are equivalent for a right R-module M:

- M is dual automorphism N-invariant.
- Provide a state of the stat
- For any small submodule K_2 of N, every epimorphism $f: M \to N/K_2$ with small kernel lifts to a homomorphism $\varphi: M \to N$.

Dual automorphism *N*-invariant modules *s*-ADS modules

Corollary (Ş., Quynh)

The following conditions are equivalent for a right R-module M:

- *M* is dual automorphism invariant.
- ② For any small submodule K of M, every epimorphism f : M → M/K with small kernel lifts to an endomorphism of M.

Dual automorphism N-invariant modules s-ADS modules

4 B 6 4 B

Recall: Let *N* and *L* be submodules of *M*. The module *N* is called a *supplement* of *L* in *M* if M = N + L and $N \cap L \ll N$. *M* is called *supplemented* if every submodule of *M* has a supplement in *M*.

Recall: Let *N* and *L* be submodules of *M*. The module *N* is called a *supplement* of *L* in *M* if M = N + L and $N \cap L \ll N$. *M* is called *supplemented* if every submodule of *M* has a supplement in *M*.

Proposition (Ş., Quynh)

Let *M* and *N* be modules and $X = M \oplus N$. The following conditions are equivalent:

- M is dual automorphism N-invariant.
- For each submodule K of X such that N is a supplement of K in X, there exists $C \le K$ such that $N \oplus C = X$.

Dual automorphism *N*-invariant modules *s*-ADS modules

A module M is called a *hollow* module if every proper submodule of M is small in M. The following observation was proved for local modules by Singh and Srivastava (Journal of Algebra, 2012).

Dual automorphism *N*-invariant modules *s*-ADS modules

A module M is called a *hollow* module if every proper submodule of M is small in M. The following observation was proved for local modules by Singh and Srivastava (Journal of Algebra, 2012).

Proposition (Ş., Quynh)

Assume that M_1 , M_2 are two hollow modules. If M_1 is dual automorphism M_2 -invariant, then M_1 is M_2 -projective.

Dual automorphism *N*-invariant modules *s*-ADS modules

Theorem (Ş., Quynh)

Let M and N be two R-modules.

- Every direct summand of a dual automorphism *M*-invariant module is also dual automorphism *M*-invariant.
- **2** *M* is dual automorphism *N*-invariant if and only if any isomorphism $f: M/B \rightarrow N/A$ with $B \ll M$ and $A \ll N$ lifts to a homomorphism from *M* to *N*.
- **(3)** If M is a dual automorphism N-invariant module and $K \cong N$, then M is dual automorphism K-invariant.
- Assume that N = A ⊕ B and M = C ⊕ D such that there exists a small epimorphism from D to B. If M is dual automorphism N-invariant, then C is dual automorphism A-invariant.

Dual automorphism *N*-invariant modules *s*-ADS modules

The following theorem extends Singh and Srivastava (Journal of Algebra,2012).

Dual automorphism *N*-invariant modules *s*-ADS modules

The following theorem extends Singh and Srivastava (Journal of Algebra, 2012).

Theorem (Ş., Quynh)

Let $\pi_1 : P_1 \to M$ and $\pi_2 : P_2 \to N$ be projective covers. Then the following conditions are equivalent.

- M is dual automorphism N-invariant.
- $o(Ker(\pi_1)) \leq Ker(\pi_2) \text{ for any isomorphism } \sigma: P_1 \to P_2.$

Dual automorphism *N*-invariant modules *s*-ADS modules

・ 同 ト ・ ヨ ト ・ ヨ ト

The following theorem extends Singh and Srivastava (Journal of Algebra, 2012).

Theorem (Ş., Quynh)

Let $\pi_1 : P_1 \to M$ and $\pi_2 : P_2 \to N$ be projective covers. Then the following conditions are equivalent.

- M is dual automorphism N-invariant.
- $o(Ker(\pi_1)) \leq Ker(\pi_2) \text{ for any isomorphism } \sigma: P_1 \to P_2.$

Letting M = N, Theorem yields the following corollary:

Dual automorphism *N*-invariant modules *s*-ADS modules

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-

The following theorem extends Singh and Srivastava (Journal of Algebra, 2012).

Theorem (Ş., Quynh)

Let $\pi_1 : P_1 \to M$ and $\pi_2 : P_2 \to N$ be projective covers. Then the following conditions are equivalent.

- M is dual automorphism N-invariant.
- $o(Ker(\pi_1)) \leq Ker(\pi_2) \text{ for any isomorphism } \sigma: P_1 \to P_2.$

Letting M = N, Theorem yields the following corollary:

Corollary (Ş., Quynh)

Let $\pi : P \to M$ be a projective cover. Then M is dual automorphism-invariant if and only if $\sigma(Ker(\pi)) \leq Ker(\pi)$ for any isomorphism $\sigma : P \to P$.

Dual automorphism *N*-invariant modules *s*-ADS modules

By Singh and Srivastava (Journal of Algebra,2012) any pseudo-projective module is dual automorphism-invariant.

Dual automorphism *N*-invariant modules *s*-ADS modules

By Singh and Srivastava (Journal of Algebra,2012) any pseudo-projective module is dual automorphism-invariant.

Proposition (Ş., Quynh)

Any N-pseudo-projective module is dual automorphism N-invariant.

Dual automorphism *N*-invariant modules *s*-ADS modules

(4月) (4日) (4日)

By Singh and Srivastava (Journal of Algebra,2012) any pseudo-projective module is dual automorphism-invariant.

Proposition (Ş., Quynh)

Any N-pseudo-projective module is dual automorphism N-invariant.

Theorem (Ş., Quynh)

Let M and N be mutually dual automorphism invariant modules and $\pi_1 : P_1 \to M$ and $\pi_2 : P_2 \to N$ be projective covers. If $P_1 \cong P_2$, then every isomorphism $\sigma : P_1 \to P_2$ reduces an isomorphism from $Ker(\pi_1)$ to $Ker(\pi_2)$.

Dual automorphism *N*-invariant modules *s*-ADS modules

30.00

Layout

- Generalization of Injectivity (Projectivity)
- 2 Automorphism Invariant Modules
- 3 Dual Automorphism Invariant Modules

4 Main Results

- Dual automorphism *N*-invariant modules
- s-ADS modules

Dual automorphism *N*-invariant modules *s*-ADS modules

<ロ> <同> <同> < 同> < 同>

æ

Serap Şahinkaya (Joint work with T.C. Quynh) ON DUAL AUTOMORPHISM-INVARIANT MODULES

Dual automorphism *N*-invariant modules *s*-ADS modules

• A right module M over a ring R is said to be ADS if for every decomposition $M = S \oplus T$ and every complement T' of S, we have $M = S \oplus T'$. (see, Fuchs, Infinite Abelian Groups, 1970)

Dual automorphism *N*-invariant modules *s*-ADS modules

- A right module M over a ring R is said to be ADS if for every decomposition $M = S \oplus T$ and every complement T' of S, we have $M = S \oplus T'$. (see, Fuchs, Infinite Abelian Groups, 1970)
- An *R*-module *M* is ADS if and only if for each decomposition $M = S \oplus T$, *S* and *T* are mutually injective.

Dual automorphism *N*-invariant modules *s*-ADS modules

伺 ト く ヨ ト く ヨ ト

- A right module M over a ring R is said to be ADS if for every decomposition $M = S \oplus T$ and every complement T' of S, we have $M = S \oplus T'$. (see, Fuchs, Infinite Abelian Groups, 1970)
- An *R*-module *M* is ADS if and only if for each decomposition $M = S \oplus T$, *S* and *T* are mutually injective.
- A module M is called an e-ADS module if, for every decomposition M = S ⊕ T and every complement T' of S with T' ∩ T = 0 and S ∩ (T' ⊕ T) ≤^e S, we have M = S ⊕ T' (Kosan and Quynh).

Dual automorphism *N*-invariant modules *s*-ADS modules

・ 同 ト ・ ヨ ト ・ ヨ ト

- A right module M over a ring R is said to be ADS if for every decomposition $M = S \oplus T$ and every complement T' of S, we have $M = S \oplus T'$. (see, Fuchs, Infinite Abelian Groups, 1970)
- An *R*-module *M* is ADS if and only if for each decomposition $M = S \oplus T$, *S* and *T* are mutually injective.
- A module *M* is called an *e*-*ADS module* if, for every decomposition *M* = *S* ⊕ *T* and every complement *T'* of *S* with *T'* ∩ *T* = 0 and *S* ∩ (*T'* ⊕ *T*) ≤^e *S*, we have *M* = *S* ⊕ *T'* (Kosan and Quynh).
- *M* is an e-ADS module if and only if for each decomposition $M = A \oplus B$, *A* and *B* are relatively automorphism invariant.

Dual automorphism *N*-invariant modules *s*-ADS modules

30.00

Any module *M* is called *amply supplemented* if *B* contains a supplement of *A* in *M* whenever M = A + B.

Dual automorphism *N*-invariant modules *s*-ADS modules

Any module *M* is called *amply supplemented* if *B* contains a supplement of *A* in *M* whenever M = A + B.

Theorem (Ş., Quynh)

Assume that an amply supplemented *R*-module *X* has a decomposition $X = M \oplus N$ for some *R*-modules *M* and *N*. Then the following conditions are equivalent:

- *M* is dual automorphism *N*-invariant.
- ② For any supplement K of N in X with K + M = X and (K ∩ M) ≪ X, the module X has a decomposition X = K ⊕ N.
- For each submodule K of X such that K is a supplement of N in X and M is a supplement of K in X, we have $X = K \oplus N$.

Dual automorphism *N*-invariant modules *s*-ADS modules

We call *M* an *s*-*ADS*-module if for every decomposition $M = S \oplus T$ of *M* and every supplement *T'* of *S* with T' + T = M and $(T \cap T') \ll M$, we have $M = S \oplus T'$.

Dual automorphism *N*-invariant modules *s*-ADS modules

We call *M* an *s*-*ADS*-module if for every decomposition $M = S \oplus T$ of *M* and every supplement *T'* of *S* with T' + T = M and $(T \cap T') \ll M$, we have $M = S \oplus T'$.

Theorem (Ş., Quynh)

The following conditions are equivalent for a module M:

- M is s-ADS.
- **2** For every decomposition $M = S \oplus T$, if T' is supplement of S in M and T is supplement of T' in M, then $M = S \oplus T'$.

Dual automorphism *N*-invariant modules *s*-ADS modules

4 B 6 4 B

Theorem (Ş., Quynh)

An amply supplemented *R*-module *M* is s-ADS if and only if for each decomposition $M = A \oplus B$, *A* and *B* are relatively dual automorphism invariant.

Dual automorphism *N*-invariant modules *s*-ADS modules

Theorem (Ş., Quynh)

An amply supplemented *R*-module *M* is s-ADS if and only if for each decomposition $M = A \oplus B$, *A* and *B* are relatively dual automorphism invariant.

Corollary (Ş., Quynh)

Every amply supplemented dual automorphism-invariant module is s-ADS.

Dual automorphism *N*-invariant modules *s*-ADS modules

<ロ> <同> <同> < 同> < 同>

æ

Serap Şahinkaya (Joint work with T.C. Quynh) ON DUAL AUTOMORPHISM-INVARIANT MODULES

Dual automorphism *N*-invariant modules *s*-ADS modules

A right *R*-module *M* is said to be ADS^* if for every decomposition $M = S \oplus T$ and for every supplement T' of *S*, we have $M = S \oplus T'$ (see Keskin, Bull. of Math. Sciences 2012). Clearly every ADS^* module is s-ADS.

Dual automorphism *N*-invariant modules *s*-ADS modules

A right *R*-module *M* is said to be ADS^* if for every decomposition $M = S \oplus T$ and for every supplement T' of *S*, we have $M = S \oplus T'$ (see Keskin, Bull. of Math. Sciences 2012). Clearly every ADS^* module is s-ADS.

Theorem (Ş., Quynh)

The following conditions are equivalent for a ring R:

- *R* is a right V-ring.
- **2** Every 2-generated right *R*-module is *ADS*^{*}.
- Severy 2-generated right *R*-module is s-ADS.

Dual automorphism *N*-invariant modules *s*-ADS modules

同 ト イ ヨ ト イ ヨ ト

THANK YOU FOR YOUR ATTENTION

Serap Şahinkaya (Joint work with T.C. Quynh) ON DUAL AUTOMORPHISM-INVARIANT MODULES